17,065 research outputs found

    The significance of World War 1 in Jan Patočka’s Philosophy

    Get PDF

    The Electrodynamics of Inhomogeneous Rotating Media and the Abraham and Minkowski Tensors II: Applications

    Full text link
    Applications of the covariant theory of drive-forms are considered for a class of perfectly insulating media. The distinction between the notions of "classical photons" in homogeneous bounded and unbounded stationary media and in stationary unbounded magneto-electric media is pointed out in the context of the Abraham, Minkowski and symmetrized Minkowski electromagnetic stress-energy-momentum tensors. Such notions have led to intense debate about the role of these (and other) tensors in describing electromagnetic interactions in moving media. In order to address some of these issues for material subject to the Minkowski constitutive relations, the propagation of harmonic waves through homogeneous and inhomogeneous, isotropic plane-faced slabs at rest is first considered. To motivate the subsequent analysis on accelerating media two classes of electromagnetic modes that solve Maxwell's equations for uniformly rotating homogeneous polarizable media are enumerated. Finally it is shown that, under the influence of an incident monochromatic, circularly polarized, plane electromagnetic wave, the Abraham and symmetrized Minkowski tensors induce different time-averaged torques on a uniformly rotating materially inhomogeneous dielectric cylinder. We suggest that this observation may offer new avenues to explore experimentally the covariant electrodynamics of more general accelerating media.Comment: 29 pages, 4 figures. Accepted for publication in Proc. Roy. Soc.

    Orbital Solutions and Absolute Elements of the Eclipsing Binary MY Cygni

    Get PDF
    Differential UBV photoelectric photometry for the eclipsing binary MY Cyg is presented. The Wilson-Devinney program is used to simultaneously solve the three light curves together with previously published radial velocities. A comparison is made with the previous solution found with the Russell-Merrill method. We examine the long-term apsidal motion of this well-detached, slightly eccentric system. We determine absolute dimensions, discuss metallicity/Am-star issues, and estimate the evolutionary status of the stars

    Foreword

    Get PDF

    Does the galaxy correlation length increase with the sample depth?

    Get PDF
    We have analyzed the behavior of the correlation length, r0r_0, as a function of the sample depth by extracting from the CfA2 redshift survey volume--limited samples out to increasing distances. For a fractal distribution, the value of r0r_0 would increase with the volume occupied by the sample. We find no linear increase for the CfA2 samples of the sort that would be expected if the Universe preserved its small scale fractal character out to the distances considered (60--100\hmpc). The results instead show a roughly constant value for r0r_0 as a function of the size of the sample, with small fluctuations due to local inhomogeneities and luminosity segregation. Thus the fractal picture can safely be discarded.Comment: Accepted for publication in ApJ

    Design of crystal-like aperiodic solids with selective disorder--phonon coupling

    Get PDF
    Functional materials design normally focuses on structurally-ordered systems because disorder is considered detrimental to many important physical properties. Here we challenge this paradigm by showing that particular types of strongly-correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic "procrystalline" solids that harbour this type of topological disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish a variety of mappings onto known and target materials. Crucially, the strongly-correlated disorder we consider is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-phonon coupling to lattice vibrations characterised by these same periodicities. The principal effect on the phonon spectrum is to bring about dispersion in energy rather than wave-vector, as in the poorly-understood "waterfall" effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly-correlated topological disorder might allow new and useful functionalities, including independently-optimised thermal and electronic transport behaviour as required for high-performance thermoelectrics.Comment: 4 figure

    Physical Bias of Galaxies From Large-Scale Hydrodynamic Simulations

    Get PDF
    We analyze a new large-scale (100h1100h^{-1}Mpc) numerical hydrodynamic simulation of the popular Λ\LambdaCDM cosmological model, including in our treatment dark matter, gas and star-formation, on the basis of standard physical processes. The method, applied with a numerical resolution of <200h1<200h^{-1}kpc (which is still quite coarse for following individual galaxies, especially in dense regions), attempts to estimate where and when galaxies form. We then compare the smoothed galaxy distribution with the smoothed mass distribution to determine the "bias" defined as b(δM/M)gal/(δM/M)totalb\equiv (\delta M/M)_{gal}/(\delta M/M)_{total} on scales large compared with the code numerical resolution (on the basis of resolution tests given in the appendix of this paper). We find that (holding all variables constant except the quoted one) bias increases with decreasing scale, with increasing galactic age or metallicity and with increasing redshift of observations. At the 8h18h^{-1}Mpc fiducial comoving scale bias (for bright regions) is 1.35 at z=0z=0 reaching to 3.6 at z=3z=3, both numbers being consistent with extant observations. We also find that (1020)h1(10-20)h^{-1}Mpc voids in the distribution of luminous objects are as observed (i.e., observed voids are not an argument against CDM-like models) and finally that the younger systems should show a colder Hubble flow than do the early type galaxies (a testable proposition). Surprisingly, little evolution is found in the amplitude of the smoothed galaxy-galaxy correlation function (as a function of {\it comoving} separation). Testing this prediction vs observations will allow a comparison between this work and that of Kauffmann et al which is based on a different physical modelingmethod.Comment: in press, ApJ, 26 latex pages plus 7 fig

    Group-work: does it have to be that bad?

    Get PDF
    Many accreditation bodies and universities require the graduate attribute of &quot;an ability to work in teams&quot; or to &quot;effectively collaborate&quot;. Students invariably dislike working in groups maintaining that &quot;malingerers ride on the back&quot; of those students who work hard and contribute effectively to the outcomes of the group or team. This is the context in which an ALTC/OLT project was established, the project is to consider ways of enhancing group-work in Architecture and design related disciplines. The project has identified the issues associated with group-work, from the perspective of student and lecturer, and has begun to develop strategies to overcome the issues. This paper reports on an assessment intervention made in a subject that involved significant levels of group-work, the initiative gained interesting responses from the students involved. Interestingly the class was multi-disciplinary and with a large percentage of international students. The students articulated during the focus group at the end of the experience were positive about the experience of having to collaborate. This paper reports on the assessment initiative as well as providing some insights into the students\u27 experiences of working in groups

    Loose Groups of Galaxies in the Las Campanas Redshift Survey

    Get PDF
    A ``friends-of-friends'' percolation algorithm has been used to extract a catalogue of dn/n = 80 density enhancements (groups) from the six slices of the Las Campanas Redshift Survey (LCRS). The full catalogue contains 1495 groups and includes 35% of the LCRS galaxy sample. A clean sample of 394 groups has been derived by culling groups from the full sample which either are too close to a slice edge, have a crossing time greater than a Hubble time, have a corrected velocity dispersion of zero, or contain a 55-arcsec ``orphan'' (a galaxy with a mock redshift which was excluded from the original LCRS redshift catalogue due to its proximity to another galaxy -- i.e., within 55 arcsec). Median properties derived from the clean sample include: line-of-sight velocity dispersion sigma_los = 164km/s, crossing time t_cr = 0.10/H_0, harmonic radius R_h = 0.58/h Mpc, pairwise separation R_p = 0.64/h Mpc, virial mass M_vir = (1.90x10^13)/h M_sun, total group R-band luminosity L_tot = (1.30x10^11)/h^2 L_sun, and R-band mass-to-light ratio M/L = 171h M_sun/L_sun; the median number of observed members in a group is 3.Comment: 32 pages of text, 27 figures, 7 tables. Figures 1, 4, 6, 7, and 8 are in gif format. Tables 1 and 3 are in plain ASCII format (in paper source) and are also available at http://www-sdss.fnal.gov:8000/~dtucker/LCLG . Accepted for publication in the September 2000 issue of ApJ
    corecore